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Abstract
Background  Defects in retinol dehydrogenase 12 
(RDH12) account for 3.4%–10.5 % of Leber congenital 
amaurosis and early-onset severe retinal dystrophy 
(EOSRD) and are a potential target for gene therapy. 
Clinical trials in inherited retinal diseases have unique 
challenges, and natural history studies are critical to 
successful trial design. The purpose of this study was to 
characterise the natural history of RDH12-associated 
retinal degeneration.
Methods  A retrospective chart review was performed 
in individuals with retinal degeneration and two likely 
disease-causing variants in RDH12.
Results  57 subjects were enrolled from nine countries. 
33 subjects had clinical records available from childhood. 
The data revealed an EOSRD, with average age of 
onset of 4.1 years. Macular atrophy was a universal 
clinical finding in all subjects, as young as 2 years of 
age. Scotopic and photopic electroretinography (ERG) 
responses were markedly reduced in all subjects, and 
a non-recordable ERG was documented as young as 
1 year of age. Assessment of visual acuity, visual field 
and optical coherence tomography revealed severe loss 
of function and structure in the majority of subjects after 
the age of 10 years. Widefield imaging in 23 subjects 
revealed a unique, variegated watercolour-like pattern of 
atrophy in 13 subjects and sparing of the peripapillary 
area in 18 subjects.
Conclusions  This study includes the largest collection 
of phenotypic data from children with RDH12-associated 
EOSRD and provides a comprehensive description of 
the timeline of vision loss in this severe, early-onset 
condition. These findings will help identify patients with 
RDH12-associated retinal degeneration and will inform 
future design of therapeutic trials.

Introduction
Inherited retinal degenerations (IRDs) encompass 
a diverse group of blinding disorders, for nearly 
all of which there are no treatments. The relative 
accessibility of the retina compared with other 
tissues has made IRDs an early target of gene 
therapy. Leber congenital amaurosis (LCA) is the 
most severe form of IRD with 25 causative genes 
identified to date, and LCA2 caused by defects in 
retinoid isomerohydrolase RPE65 (RPE65) is the 
first genetic disorder to be treated with a Food and 

Drug Administration-approved gene therapy.1–12 
LCA13 due to recessive mutations in RDH12 
accounts for approximately 3.4%–10.5% of LCA 
and early-onset severe retinal dystrophy (EOSRD) 
and is particularly devastating due to early macular 
atrophy.13–17 RDH12 encodes retinol dehydroge-
nase 12, an enzyme expressed in photoreceptors 
that reduces all-trans-retinal to all-trans-retinol.18 
Following the success in gene supplementation 
therapy for another visual cycle enzyme, RPE65, 
RDH12-associated retinal degeneration is now also 
a potential target for gene therapy. Although the 
conversion of all-trans-retinal to all-trans-retinol is 
a critical step in the visual cycle, a number of studies 
have shown that this step is largely performed by 
RDH8 in photoreceptor outer segments, whereas 
RDH12 is located in the inner segment and reduces 
excess all-trans and 11-cis retinaldehydes that leak 
into the inner segment during periods of high 
photostimulation.19–22 Thus, RDH12 is proposed 
to protect the photoreceptor inner segment from 
toxic buildup of multiple damaging aldehydes. Loss 
of this critical function is particularly detrimental 
to the macula early in life.23 The natural history of 
RDH12-associated retinal degeneration requires 
detailed definition to aid the effective design and 
testing of treatment strategies.

Many genetic aetiologies have overlapping 
or even identical phenotypes, and any unique 
or pathognomonic features that can distinguish 
between aetiologies is helpful in directing genetic 
testing strategies, especially in areas where genetic 
testing is not widely available. After genotyping, 
one of the biggest challenges for developing thera-
pies for IRDs is appropriate clinical trial design and 
determining optimal outcome measures, which may 
be different for distinct genotypes.24 This retrospec-
tive natural history study reports unique phenotypic 
features that strongly suggest a genetic diagnosis of 
RDH12-associated retinal degeneration, and more-
over, defines milestones in disease progression early 
in life when the retina may be most amenable to 
treatment.

Methods
Subject ascertainment and genetic testing
Subjects with retinal degeneration and either a 
homozygous or two compound heterozygous likely 
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Figure 1  VA progression with age. A scatter plot is shown in the upper left with the first VA recorded for each eye for each patient. For conversion 
to LogMAR, count fingers=2, hand motions=3, perception of light=4, no perception of light=5. VA is variable in early childhood and severe vision loss 
is common after age 10 years, with few subjects retaining LogMAR 0.5 or better. Longitudinal VA during adolescence is shown for eight individual 
subjects. LOgMAR, logarithmic minimum angle of resolution; VA, visual acuity.

disease-causing variants in RDH12 were evaluated at the Univer-
sity of Michigan Kellogg Eye Center (two subjects: one adult and 
one child), Moorfields Eye Hospital (27 subjects: 21 adults and 6 
children), the Oregon Health Science University (OHSU) Casey 
Eye Institute (nine subjects: eight adults and one child), and a 
recruitment letter sent through other clinicians (six subjects: 
one adult and five children) and the RDH12 Fund for Sight (12 
subjects: all children). Two additional subjects (one adult and 
one child) contacted us after learning of our work on RDH12 by 
word of mouth or online. Variants were considered likely disease 
causing if they were nonsense, frameshift or canonical splice site 
variants, or if they were missense variants with either in vitro 
data showing reduced function or in silico analysis predicting 
reduced function in two out of three tools (Polyphen, Provean 
and SIFT).25–27 Genetic testing was performed using a variety of 
strategies, including single-gene sequencing and next-generation 
sequencing gene panels. This study was performed in accordance 
with the Declaration of Helsinki. The research was approved by 
the Institutional Ethics Committee at Moorfields Eye Hospital, 
and the Institutional Review Boards at the University of Mich-
igan and OHSU.

Clinical data
Clinical records were requested including the following: notes, 
genetic testing reports and imaging, including visual fields (VFs), 
optical coherence tomography (OCT), colour fundus photog-
raphy and fundus autofluorescence (FAF). Snellen visual acuity 

(VA) was converted to logarithmic minimum angle of resolution 
(LogMAR). For these purposes, count finger (CF) vision was 
converted to a LogMAR of 2, hand motion vision was converted 
to a LogMAR of 3, light perception vision was converted to a 
LogMAR of 4 and no light perception vision was converted to a 
LogMAR of 5.28 The earliest recorded VA for each eye, for each 
subject, was used for the VA scatter plot in figure 1. Available 
Goldmann VF (GVF) images were scanned, and the area of each 
isopter was measured using Adobe photoshop, subtracting the 
area of any included scotomas. For Octopus VFs, the area of 
each isopter was automatically calculated by the Octopus soft-
ware. Fundus photos, autofluorescence images and OCT images 
were collected when available. Available images varied widely 
between subjects and were obtained with Zeiss, Heidelberg and 
Optos cameras. Due to the heterogeneity of image files, quanti-
tative analysis was not possible and analysis was descriptive.

Reverse transcription-PCR
RNA was extracted from peripheral blood using PAXgene 
Blood RNA Kits (PreAnalytix). Coding DNA was made with 
250 ng total RNA using SuperScript II reverse transcriptase 
(RT) (Invitrogen), and multiplexed RT-coupled PCR was run 
the same day in triplicate using Taqman probes with conjugated 
carboxyfluorescein (FAM) for RDH12 amplification and conju-
gated 2’-chloro-7’phenyl-1,4-dichloro-6-carboxy-fluorescein 
(VIC) for PGK1 amplification (Applied Biosystems). Taqman 
probes were designed by Thermo Fisher Scientific, assay ID 
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Hs00288401_m1 using Refseq NM_152443.2 for RDH12 and 
assay ID Hs00943178_g1 using NM_000291.3 for PGK1. PCR 
reactions were run in the Biorad iCycler. Relative RDH12 tran-
script levels were normalised to PGK1.

Results
Subjects
In all, 57 subjects from 50 families with retinal degeneration 
and two likely disease-causing variants in RDH12 were enrolled, 
including 26 from the USA, and 31 from other countries (Great 
Britain, India, Pakistan, Saudi Arabia, Bangladesh, Cyprus, 
China and Spain). The number of visits ranged from 1 to 21, 
with an average of 5.2. For all visits, subject ages ranged from 2 
to 70 years. For 32 out of 57 subjects (56%), clinical data from 
childhood (before 18 years) was available, with age at first visit 
ranging from 2 to 16 years (average 6.0). Subject- or parent-re-
ported age of onset ranged from infant (3 months) to 22 years 
(average 4.1 years, median 3 years), with the 22-year old being 
an outlier. In total, 33 subjects had documentation of subject- or 
family-reported presenting signs. The most commonly reported 
presenting signs were nystagmus in eight subjects (24%), uncor-
rectable central vision loss in seven subjects (21%), not reaching 
or difficulty finding dropped objects in six subjects (18%) and 
nyctalopia in five subjects (15%). Other presentations included 
toddlers who were overly cautious when learning to walk or 
seemed clumsy, who did not look at faces or make eye contact, 
and strabismus.

Sequence variants
A total of 42 likely disease-causing sequence variants were iden-
tified in the cohort, including 30 missense variants, 6 nonsense 
variants, 5 frameshift variants and 1 splice site variant (table 1). 
In all, 28 of the mutations have been previously reported. The 
most common mutation was a 5 bp deletion at codon 269. Eight 
of the variants had in vitro functional data to support pathoge-
nicity.16 29–32 A summary of genotype and phenotype for each 
subject is available in the supplemental material (online supple-
mentary table S1).

Visual acuity
VA ranged from 20/30 to no perception of light. VA was vari-
able in early childhood, with vision of 20/200 occurring as 
early as 2 years of age in one subject, and CF vision occurring 
as early as 3 years of age while other young children retained 
excellent VA (figure 1). Seven out of 25 subjects aged 10 years 
and below (28%) had a vision of 20/200 or worse in the better 
seeing eye. The variability in early childhood was likely due in 
part to differences in disease severity but also possibly due to 
suboptimal cooperation, a common confounder in young chil-
dren. This was demonstrated by longitudinal data in subject 1, 
who showed marked improvement in measured VA in each eye 
between the ages of 3 and 8 years (figure 1). After the age of 10 
years, progressive VA decline was common. However, out of 38 
individuals older than 10 years, six subjects (16%) had docu-
mented 20/60 (LogMAR 0.5) or better vision in at least one eye, 
including 3 out of 31 subjects over the age of 20 years (10%), 
with one mildly affected outlier retaining 20/100 vision at the 
age 68 years.

Longitudinal data from eight subjects that included assess-
ments during adolescence confirmed that there was significant 
VA decline between the ages of 10 and 20 years (figure 1). The 
exceptions were subject 2, who already had CF vision in each eye 
by age 10 years, and subject 3, who maintained relatively stable 

VA until the age of 15 years, which is the latest data point. In 
subjects 1 and 4, VA was relatively stable until after age 12 years. 
Subjects 5, 6, 7 and 8 have no clinical data from early childhood 
but showed rapid VA decline between the ages of 10 and 20.

Refraction data were available for 14 subjects. Using the most 
recent refraction for each subject, there were six subjects with 
mild hyperopia, ranging in age from 2 to 8 years, six subjects 
with moderate hyperopia, ranging in age from 7 to 11 years, and 
two subjects with high hyperopia, ages 3 and 5 years.

VF and ERG
VF constriction was a universal finding, and central or paracen-
tral scotomas were also seen in some subjects. VF images were 
available for 16 subjects, ranging in age from 6 to 68 years, 
including 12 GVFs and 4 Octopus VFs, which have been shown 
to give comparable results.33 As seen in figure 2, for the smallest 
and dimmest isopter (I4e), VF area was variable in subjects before 
the age of 10 years and was severely diminished in subjects 10 
years and older, other than two outliers, ages 31 and 68 years. 
The trend disappeared with increasing target size, as the larger 
isopters had better VF preservation in most subjects. Of note, the 
68-year old, with well-preserved VF for isopters I4e and III4e, is 
the previously discussed mildly affected outlier with 20/100 VA 
(figure 2). Furthermore, the other subjects with relative preser-
vation of VF after the age of 20 years in figure 2 also had relative 
preservation of VA in figure 1, ranging from LogMAR 0.3 to 0.7.

Full-field electroretinography (ERG) data were available in 27 
subjects and revealed markedly reduced rod and cone responses. 
A non-recordable ERG was reported in a subject as young as 
1 year of age, and the oldest subject with recordable responses 
was 29 years old. This individual had exceptionally mild ERG 
changes and presentation, with age of onset at 22 years.

Retinal findings and imaging
Macular atrophy was a universal finding documented on exam-
ination in all subjects, even as young as 2 years of age. With 
disease progression, the area of atrophy extended peripherally 
in a unique variegated watercolour-like pattern, which in most 
cases corresponded to the retinal vasculature. This pattern was 
visualised both clinically and on colour fundus photography and 
was further emphasised on FAF (figure 3). In a 3-year-old subject 
with early disease, the atrophy was confined to the macula, and 
mild perivascular hyperautofluorescence was seen along the 
arcades on FAF (figure  3A,B). In a 13-year-old subject with 
more advanced disease, the watercolour pattern extended into 
the periphery, with some areas of atrophy extending along the 
retinal vasculature (figure 3C,D). In a 41-year-old with end-stage 
disease, there was widespread atrophy with variegated edges in 
the far periphery, demonstrating how the watercolour fundus 
progresses from the posterior pole outward (figure 3E,F).

Out of 23 subjects with available FAF images, the waterco-
lour pattern was seen in 13 individuals in at least some areas 
(online supplementary figure S1). In addition, 18 out of 23 had 
peripapillary sparing on FAF (figure 3D). These features were 
less evident in end-stage disease with widespread atrophy, but 
common in all subjects with earlier disease and remaining areas 
of preserved retina.

OCT imaging demonstrated that the variegated waterco-
lour pattern demarcated the borders of outer retinal atrophy 
(figure 3G,H). The area of yellow atrophy seen in colour fundus 
images corresponded with loss of outer nuclear layer (ONL), 
ellipsoid zone and disruption of the RPE as revealed by OCT 
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Figure 2  VF progression with age. A scatter plot is shown for 
calculated VF area for the I4e, III4e and V4e isopters for patients with 
available fields, one field per eye per patient. Severe VF loss was 
common after age 10 years, especially for the smallest isopter. VF, visual 
field.

imaging while the darker border corresponded to thinning of 
ONL and attenuation of the ellipsoid zone on OCT.

OCT images with horizontal cuts through the fovea were 
available from 36 subjects (67 eyes). Age at the time of OCT 
ranged from 3 to 58 years (average 28). Out of 36 subjects (67 
eyes), seven subjects (12 eyes) had partially preserved ellipsoid 
zone in the macula (ages 3–22 years), and three subjects (six 
eyes) had ellipsoid zone at the fovea (ages 3–15 years). In all, 24 
subjects (42 eyes) had partial preservation of ONL in the macula 
(ages 3–44 years), and eight subjects (14 eyes) had preservation 
of ONL at the fovea (ages 3–15 years). There was no one over 
the age of 15 years with preservation of either ellipsoid zone or 
ONL at the fovea, consistent with the VA findings that adoles-
cence is a period of significant disease progression. In addition, 
advanced disease was associated with the development of poste-
rior staphyloma. Out of 36 subjects (67 eyes), 16 subjects (31 
eyes) demonstrated posterior staphyloma on OCT, ranging in 
age from 21 to 58.

RDH12 transcript levels can link genotype with phenotype
One subject presented at the age of 2 years with mild nystagmus, 
but remained visually asymptomatic until the age of 5 or 6 years, 
when he began having mild night blindness and reduced periph-
eral vision. Genetic testing at the age of 6 years revealed homo-
zygous early nonsense mutations in RDH12 (Ser13X). His VA 
has remained relatively well preserved to date (20/40 in each 
eye at 8 years of age). Because RDH12 is expressed in peripheral 
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Figure 3  Distinct variegated pattern of atrophy on colour photos and FAF in three patients at different stages of disease. (A) 30° colour photo and 
(B) FAF of a 3-year-old subject. (C) Optos colour photo, (D) FAF of a 13-year-old subject, (E) Optos colour photo and (F) FAF of a 41-year-old subject, 
showing evolution of the variegated atrophy in the different stages of disease. (G) OCT and (H) corresponding red-free photo in the right eye of the 
3-year-old subject from (A) and (B), showing the outer retinal atrophy corresponding with the borders of the variegated fundus pattern. FAF, fundus 
autofluorescence; OCT, optical coherence tomography.

blood, blood samples were collected and RNA isolated to assess 
RDH12 transcript levels. The Ser13X variant is classified as likely 
pathogenical and expected to result in nonsense mediated decay 
and a null phenotype. Although RDH12 expression in blood was 
variable in normal controls, the affected subject had consistently 
detectable RDH12 transcript over 45% compared with controls. 
A downstream methionine at position 17 with codon ATG may 
serve as an alternative translation start site and account for the 
relatively mild phenotype in this individual.

Discussion
This study includes the largest well-characterised cohort 
of subjects, and moreover the largest cohort of children, 
with RDH12-associated retinal degeneration, and therefore 
provides the most comprehensive description to date of the 
timeline of vision loss in this severe, early-onset condition. In 
early childhood, there is variable VA, which typically declines 
after the age of 10 years. Longitudinal VA data for several 
subjects confirmed that adolescence is a period of significant 
visual decline. OCT also demonstrated universal loss of the 
ellipsoid zone and ONL in the fovea during adolescence. 
Possibly not surprisingly, VF loss was more variable but also 
showed a decline after age 10 years for the smallest isopter. 
The data suggest that although some individuals have severe 
vision loss in early childhood (28% based on VA), others who 
retain useful vision until adolescence are at risk for significant 
progression before adulthood. Furthermore, there appeared 
to be a small subset of individuals (10%) who retained useful 
vision well into adulthood, thus increasing the potential thera-
peutic window. The youngest subject in our cohort with fundus 
imaging was 3 years old and showed macular atrophy with 
sparing of the fovea. Additional OCT studies in early child-
hood are needed to determine whether this is a common early 
phenotype, which would potentially allow early intervention 
to salvage the fovea. The strengths of these data include the 
large number of children and the availability of longitudinal 

data for some subjects. It is retrospective in nature, and thus 
the heterogeneity of available clinical data between subjects 
limits our ability to perform quantitative analyses.

As many inherited retinal diseases have significant overlap 
in phenotype, distinct fundus findings that point to a partic-
ular genetic diagnosis can be clinically useful. This study high-
lights a unique fundus signature in RDH12-associated retinal 
degeneration, namely a watercolour-like appearance that is 
not found in other IRDs. The watercolour fundus pattern 
outlines the border between preserved and degenerated retina, 
expands with progression of the disease and is less apparent in 
end-stage disease. In the majority of cases, the atrophy corre-
sponded to retinal vasculature. Peripapillary sparing was best 
visualised on FAF and was common until late in disease, which 
has been previously described in RDH12-associated retinal 
degeneration and was first described in Stargardt disease.34–36 
This distinct appearance may help to identify individuals 
with this condition. The most common phenotypic features 
of RDH12-associated retinal degeneration are summarised in 
table 2.

One of the most mildly affected subjectsI in our cohort 
initially presented at the age of 11 years with uncorrectable 
reduced VA, and she was most recently seen at the age of 70 
years with VA of 20/125 in each eye and mild to moderate 
VF constriction. Of note, her genotype is c.701 G>A (p. 
Arg234His) and c.806_810delCCCTG (p. Ala269Glyfs*2). 
While the latter variant results in a frameshift and is expected 
to act as a null allele, the Arg234His variant is predicted 
benign by Polyphen-2 and has previously been tested in vitro 
and retained 44% of normal enzyme activity.32 The Arg234His 
variant was also previously reported in compound heterozy-
gous form with N125K (which demonstrates <10% normal 
activity in vitro) in a 21-year-old subject with a relatively mild 
phenotype.32 Thus, Arg234His likely acts as a hypomorphic 
allele and explains our subject’s preserved visual function even 
in late adulthood. This also suggests that restoration of less 
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Table 2  Most common phenotypic features of RDH12-associated 
retinal degeneration

Category Most common findings
Percent of 
subjects

Presenting sign Nystagmus
Uncorrectable central vision
Difficulty finding objects

(8/33) 24%
(7/33) 21%
(6/33) 18%

OCT Outer retinal atrophy in macula (35/35) 100%

Fundus photo Macular atrophy (including 
staphyloma in late stages)
Variegated watercolour fundus

(24/24) 100% 

(15/22) 68%

Fundus 
autofluorescence

Macular atrophy
Watercolour fundus
Peripapillary sparing

(23/23) 100%
(13/23) 57%
(18/23) 78%

The most common findings in each category are listed, along with the prevalence of 
the finding in our cohort (number of subjects with finding/number of subjects with 
available data).
OCT, optical coherence tomography.

than 50% RDH12 function may benefit patients. Other geno-
type–phenotype correlations may require the use of RT-PCR 
to evaluate transcript levels of RDH12, which is expressed 
in peripheral blood leukocytes. We have demonstrated this 
in a subject with a relatively mild phenotype and only mildly 
reduced transcript levels despite a homozygous early nonsense 
variant (p.Ser13X).

This study contributes to the current understanding of the 
natural history of RDH12-associated retinal degeneration and 
has identified a unique fundus signature that is strongly sugges-
tive of the genetic diagnosis. These data highlight the window 
of opportunity and the need to target future therapeutic strat-
egies towards young children in order to potentially preserve 
vision. It also demonstrates that adolescence may be a period 
of relatively rapid progression for many patients, which may 
allow demonstration of therapeutic efficacy over a relatively 
short time period in the setting of a clinical trial.
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